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Abstract— Accurate and robust 3D scene reconstruction from
casual, in-the-wild videos can significantly simplify robot de-
ployment to new environments. However, reliable camera pose
estimation and scene reconstruction from such unconstrained
videos remains an open challenge. Existing visual-only SLAM
methods perform well on benchmark datasets but struggle
with real-world footage which often exhibits uncontrolled mo-
tion including rapid rotations and pure forward movements,
textureless regions, and dynamic objects. We analyze the
limitations of current methods and introduce a robust pipeline
designed to improve 3D reconstruction from casual videos. We
build upon recent deep visual odometry methods but increase
robustness in several ways. Camera intrinsics are automatically
recovered from the first few frames using structure-from-
motion. Dynamic objects and less-constrained areas are masked
with a predictive model. Additionally, we leverage monocular
depth estimates to regularize bundle adjustment, mitigating
errors in low-parallax situations. Finally, we integrate place
recognition and loop closure to reduce long-term drift and
refine both intrinsics and pose estimates through global bundle
adjustment. We demonstrate large-scale contiguous 3D models
from several online videos in various environments. In contrast,
baseline methods typically produce locally inconsistent results
at several points, producing separate segments or distorted
maps. In lieu of ground-truth pose data, we evaluate map
consistency, execution time and visual accuracy of re-rendered
NeRF models. Our proposed system establishes a new baseline
for visual reconstruction from casual uncontrolled videos found
online, demonstrating more consistent reconstructions over
longer sequences of in-the-wild videos than previously achieved.

I. INTRODUCTION

Creating 3D maps is a key requirement for most ap-
plications of mobile robots, and mature methods exist for
accurate mapping with lidar and RGBD data. However, these
methods still require costly hardware and most often skilled
staff to calibrate sensors and postprocess results, making the
creation of maps and datasets a resource-intensive activity.
If we could create accurate 3D maps from casual “in-the-
wild” videos found online, that would greatly decrease the
deployment effort of mobile robot systems. Consider for
example a tour guide robot for a historical site, where the
map could be taken from an existing Youtube video or by
unskilled staff casually walking around with a phone, as
opposed to surveying the site with a mapping kit. Reliable 3D
scene reconstruction and camera pose estimation from such
in-the-wild videos is an open research challenge. Existing
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methods for visual-only SLAM (simultaneous localization
and mapping) and SfM (structure-from-motion) [1, 2, 3, 4, 5]
work well on benchmark datasets (typically mostly stationary
scenes with large camera baselines) but are computationally
expensive and struggle in uncontrolled real-world settings,
particularly in the presence of large camera rotations, texture-
less environments, and dynamic objects. More specifically—
as we will show in our experiments and analysis (Sec-
tion IV)—current visual SLAM and SfM methods often
fail and generate multiple separate trajectories due to small-
parallax motion during the recording and insufficient reliable
correspondence estimations across frames.

In this work, we analyze the limitations of current methods
and introduce a robust pipeline designed to handle these
challenges, and push the boundaries of robust 3D scene
reconstruction from unconstrained video data. We primarily
focus on robustness, i.e., we want to generate one consistent
trajectory. In order to work with in-the-wild videos shot with
unknown cameras, we first initialize the reconstruction pro-
cess by estimating camera intrinsics from the first few frames
using structure-from-motion. In Section IV-D we present an
evaluation of several recent methods for recovering focal
length and show our method can get accurate focal length
for reconstruction. At the core of our pipeline is the deep
visual odometry method DPVO [6], chosen because of its
reliable correspondence estimation and efficiency. Instead of
keypoint detection and feature matching, DPVO estimates
frame-to-frame correspondence by evaluating deep optical
flow, which can handle texture-poor regions well. To handle
dynamic objects and unconstrained regions like the sky, we
mask them out with a predictive model [7]. Unlike traditional
methods that rely solely on 2D correspondences—which
struggle with large rotations—we use mono-depth estimates
[8] to regularize bundle adjustment (BA), making the pipeline
much less sensitive to small-parallax situations, e.g., when
the camera is far from the scene and rotation-only motion.
Finally, we incorporate place recognition and loop closure
to reduce long-term drift. We run a final refinement to refine
camera intrinsics, to ensure high-quality results.

Our proposed system establishes a new baseline for vi-
sual reconstruction in challenging real-world settings, out-
performing existing approaches in scenarios with extreme
motion, dynamic elements, and sparse loop closures. In par-
ticular, we demonstrate consistent reconstruction over longer
sequences from in-the-wild videos than existing methods can
produce. These reconstruction results may be used for several
downstream tasks, such as visual localization, novel view
synthesis, and 3D scene understanding.

In summary, the contributions of this paper are:
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• Targeting the characteristics of uncalibrated settings, the
presence of dynamic objects, small baselines(such as
pure rotation), and long distances in the wild videos, we
propose a robust visual SLAM system including quick
calibration, dynamic object removal, depth-guided BA
and pose graph optimization.

• Compared to current SOTA SfM methods [2, 3], our
method achieves more robust results, generating smooth
and continuous trajectories from 15-minute videos.

• We propose new metrics to evaluate the robustness and
accuracy for in-the-wild video reconstruction, which can
work as a baseline for future work.

II. RELATED WORK

There are many works on 3D reconstruction from 2D RGB
images, but the most popular ones share similar pipelines: 1)
estimating image correspondence, and 2) optimizing camera
poses and scene geometry. According to the relevance to
the paper, we divide the existing work based on whether
prior knowledge (specifically, scene geometry estimation) is
involved.

A. Without explicit geometry estimation

Traditional vSLAM [1] and SfM [2] methods mainly rely
on multiple view tracks to optimize camera poses and ge-
ometry. COLMAP [2] is one prominent example: COLMAP
begins with image correspondence estimation by detecting
and matching SIFT [9] keypoints between images. After
initializing with two-view geometry estimation, COLMAP
incrementally registers and triangulates new images until
no image is successfully registered. Visual SLAM can be
regarded as an online version with sequential inputs.

Many previous works try to improve the correspondence
estimation accuracy by replacing hand-crafted (SIFT) fea-
tures with learned keypoints [10, 11]. One can refer to the
open repository deep-image-matching1 for more information
about modern keypoint detection and matching used in SfM.
These keypoints work well in most cases, but can fail
in textureless regions. Recent detector-free correspondence
estimation [12] shows better performance on texture-poor
regions. We build our work upon DPVO [6] which estimates
correspondence via deep optical flow without any keypoints.

Aside from improving feature detection and matching,
another line of work focuses on optimization. Some methods
try to improve efficiency by global reconstruction [3, 13],
optimizing all frames in one stage.

However, one well-known drawback of current
SfM/vSLAM methods is that when the baseline between
camera poses is small, bundle adjustment optimization is
unreliable, which often results in scale drift or large errors
in pose estimation. To reduce the impact of this behavior,
it is common to filter out points with small triangulation
angles [2], which will result in fewer points in the map
and make it difficult to register the next image. In the
scenarios considered in this work, where there are (close-to)

1https://github.com/3DOM-FBK/deep-image-matching

pure rotations and where the camera can be relatively far
from the scene, this approach can lead to multiple disjoint
reconstructions as the removed points split the trajectory
into multiple parts.

B. With explicit geometry estimation

Due to the inherent ambiguity in the BA optimization,
some prior methods seek to incorporate additional geometry
estimates in the BA process. For example, StudioSfM [14]
gets the depth image from an extra depth estimator and pro-
poses to add depth regularization terms in the triangulation of
TV show scenes with camera movement. StudioSfm builds
upon the incremental SfM COLMAP, but still requires known
intrinsics. The depth is used when registering new images;
in our method, we fuse the prior depth in the BA stage to
avoid instability in optimization. MegaSAM [15], building
on DROID-SLAM [16], also uses prior depth during the BA
optimization. However, its dense optical flow prediction is
not scalable to large-scale scenes.

The recent work Dust3R [17] / Mast3R [18] and follow-up
works [19, 5, 20] can also be regarded as using additional
geometry estimation. The Dust3R model predicts the 3D
point map directly. When aligning multiple frames together,
3D-3D matching is conducted first and followed by 2D-
3D refinement. MASt3R-SLAM [20] utilizes Mast3R model
prediction directly, tracking new camera frames by aligning
point-maps in 3D space. The dense prediction and multiple
frame alignment consume a lot of GPU memory, and cannot
be applied to large-scale scenes. In this work, we focus on
long-sequence videos which often consist of thousands of
images. To our knowledge, none of the methods before tried
to directly reconstruct from long in-the-wild online videos.

III. METHOD

As discussed above, current state-of-the-art SLAM/SfM
methods often break trajectories into multiple segments when
faced with challenging conditions, such as fast rotations
commonly found in in-the-wild video sequences. This paper
addresses these limitations by proposing a novel method
capable of computing a single cohesive trajectory even under
demanding conditions present in casual uncontrolled videos.

Our method is overviewed in Fig. 1. We first present our
initialization strategy in Section III-A. In Section III-B, we
describe the main reconstruction pipeline, adopting a deep
learning-based optical flow estimation to determine image
correspondences within a temporal sliding window, as well as
introducing prior depth estimation as an extra regularization
term in order to effectively reduce drift errors when the
baseline between frames is small. Furthermore (Section III-
C), to reduce the drift accumulated during reconstruction, we
find loop closures by evaluating NetVLAD [21] descriptors
on the image and optimizing on SIM(3) to fix both scale
and pose drift. Optionally (Section III-D), a final bundle
adjustment step can be performed on the entire sequence
to optimize both camera parameters and the scene structure.

https://github.com/3DOM-FBK/deep-image-matching


Fig. 1: Overview of our method. Given a video stream, we extract frames from the video sequentially. We first run an efficient global
SfM process to estimate the camera intrinsic parameters Kinit (Section III-A). Using an off-the-shelf semantic segmentation model,
we prune the potential objects in the image (Section III-B.2) when estimating correspondence between frames. Correspondences are
estimated across frames by DPVO; we use a monocular depth estimation model to get the prior depth, which can be used to guide the
bundle adjustment optimization to improve robustness (Section III-B.3). SIM(3) pose graph optimization is conducted if a loop closure is
detected (Section III-C). Finally, we run a re-triangulation and optionally global BA to refine the camera parameters and scene geometry
(Section III-D).

A. Initialization

Since we work with in-the-wild videos, camera parameters
like focal length are usually unknown. Thus, we first process
a short sequence of frames to set up the scene and to obtain
an initial estimate for the camera intrinsics.

Assuming a pinhole camera model without distortion, the
camera intrinsics can be estimated by selecting Ninit frames
that have sufficient difference in optical flow (evaluated by
RAFT [22] between consecutive frames) in order to get
enough parallax for reliable estimation. Then GLOMAP is
run on the collected images, yielding an initial coarse esti-
mate Kinit of the camera intrinsics (but note that GLOMAP
is only used in the initialization stage). We evaluate the
current focal length estimation methods in Section IV-D, our
method achieved the most accurate reconstruction though at
the cost of some extra seconds.

B. Incremental Reconstruction

1) Preliminaries: At the heart of our visual SLAM
pipeline, following the acquisition of the initial coarse cam-
era intrinsic parameters Kinit, lies the feature extraction
and matching module from DPVO [6]. This module uses a
recurrent neural network (RNN) to estimate correspondences
without the need for explicit keypoint detection.

In DPVO, Npatch patches of p × p pixels are extracted
from each image. Patch k in frame i is represented by Pik =
[x,y, 1,d]⊤, where x,y,d ∈ Rp2×1. Here, x,y denote the
2D coordinates of the extracted patches, and d represents
the associated inverse depths. Patches are randomly extracted
from each image and each patch is connected to adjacent
frames. When estimating the correspondence of the extracted

patch in other frames, feature correlation is conducted be-
tween the patch feature and the image feature. For further
details on the neural network architecture used to process the
image and estimate correspondence, we point the reader to
the original DVPO paper [6].

Once patches are extracted from the frames and frame-
to-frame correspondences have been estimated, bundle ad-
justment is conducted by minimizing the re-projection error.
The re-projection Pj

ik of a given patch Pik to the frame j
is expressed as:

Pj
ik = Πinit(Gij Π−1

init(Pik)); Gij = Gj ·G−1
i

where Πinit is the camera model constructed from Kinit,
which projects 3D points to 2D pixel coordinates, while Π−1

init

is the inverse projection which re-projects 2D pixels to 3D
points in the local coordinate frame. Gi is the camera pose of
frame i, representing the world-to-camera order. Assuming
that according to the DPVO network prediction, the image
correspondence of patch Pik on frame j is P̂j

ik, which
is the 2D re-projected coordinates and P̂j

ik = [x̂j , ŷj ] ∈
Rp2×1. Then the bundle adjustment aims to minimize the
re-projection error

E(G,d) =
∑
(i,j)

∑
k

||Pj
ik − P̂j

ik||. (1)

2) Semantic Masking: In casual videos, objects, such
as pedestrians or vehicles, frequently appear within the
frame. To avoid potential wrong correspondences caused
by dynamic objects, we avoid extracting patches on them.
Using a semantic segmentation model, areas predicted to
contain dynamic objects are masked. Although semantic
masks are a simple strategy, they offer an efficient and



direct method for excluding potentially dynamic elements.
To further stabilize our optimization, we also prune regions
lacking strong constraints, such as sky.

3) Depth-regularized BA: Given the frame-to-frame 2D
correspondence estimates, we jointly optimize the geometry
(i.e., the depth of the patches) and camera poses using bundle
adjustment (BA). As mentioned before, small-parallax views
can introduce ambiguity in depth and pose estimation. This is
why popular SfM implementations [2] exclude points lacking
sufficient triangulation angles. Multiple view constraints—
i.e. observing the same objects from different positions—can
help solve the problem. However, in uncontrolled walking-
tour videos, collecting enough views from varied positions
is challenging because the movement (and video stream) is
mostly going forwards. On the other hand, SLAM pipelines
using range sensors—such as lidar or RGBD—are not af-
fected by depth ambiguity, even in sequences with pure
rotation.

Inspired by recent advances in monocular depth esti-
mation models, we integrate prior depth information into
our optimization process. Specifically, given an image I ∈
R3×H×W , we input I and the estimated intrinsic parameters
Kinit into the monocular depth estimation model to obtain
the corresponding depth map D ∈ RH×W . When registering
the new image Ii into the current reconstruction, we first
rescale the depth Di to align with the existing reconstruction.
The scale factor αi is determined by evaluating Di with the
median depth of the latest three keyframes’ patches:

αi =
median(Di)

median(P[d](i−3:i))
.

After computing the rescaled depth, we add a depth regular-
ization term to the bundle adjustment to guide the optimiza-
tion Eq. (1):

E(G,d) =
∑
(i,j)

∑
k

||Pj
ik − P̂j

ik||+ µ||Pik[d]− αiDik||, (2)

where µ is the regularization term weight.

C. Loop Detection and Pose-graph optimization

For large-scale scene reconstruction, accumulation of drift
is unavoidable, so place recognition and loop closure are
needed to correct the trajectory. We use NetVLAD [21]
to extract feature descriptors Vi ∈ RD for each image
and, to avoid false positive loop detection, we follow the
common practice of requiring 3 consecutive matching frames
to register a loop closure; sequences with less than N
consecutive frames are disregarded.

When a loop is detected, we run a scale-aware pose graph
optimization [23]. This process transform each camera pose
from SE(3) = [R t

0 1 ] to SIM(3) = [ sR t
0 1 ] by introducing

the scale factor s ∈ R+. Given ∆Sij the transformation
between frame i and the detected loop frame j, the loop
closure residual is defined as:

r = logSIM(3)(∆S−1
ij SiSj),

where Si and Sj are the absolute similarity poses. The pose
graph optimization is run synchronously, with the current
detected loop frame held fixed while optimizing all previous
frames.

D. Post-Refinement

Finally, after running the SLAM pipeline on the video
sequence, we perform a post-refinement to get better re-
sults. We first run the feature matching on all images to
create a feature database, then we re-triangulate points with
achieved camera poses from the SLAM above. We use the
point triangulator function in COLMAP to conduct
the re-triangulation, enabling refinement of camera intrinsic
parameters. Optionally, we can run ba adjuster to refine
both camera poses and scene geometry at the cost of time.

IV. EXPERIMENTS

In this section, we present both quantitative and qualitative
experiments demonstrating the robustness of our method on
in-the-wild videos. Our method outperforms current state-of-
the-art SfM methods, producing more continuous trajectories
with fewer breaks and reduced computation time. Addition-
ally, we conduct ablation studies to validate the effectiveness
of the individual components of our proposed pipeline.

A. Experiment Setup

1) Baselines: As the baselines, we choose the
SOTA structure-from-motion methods COLMAP [2]
and GLOMAP [3]. We did not compare with some visual
SLAM methods [1, 16] because they are known to be fragile
with in-the-wild videos [24]. For some recent modern SfM
methods [4, 5], due to the heavy GPU requirement, they are
not scalable to large-scale scenes.

2) Datasets: We select tour videos (see Table II) from
YouTube channels with permissive licenses or with the ap-
proval of authors. We manually remove the “preview” section
from each video, segment the videos into approximately
15-minute clips, and extract frames at 3 FPS to ensure all
methods can run within a reasonable timeframe. For drone-
recorded videos, we extract frames at 10 FPS due to their
higher motion speed. We rescale images to 512 × 288, which
is compatible with our method. For the baselines COLMAP
and GLOMAP, we rescale images to 2K resolution because
they work better on high-resolution images.

3) Evaluation Metrics: Different from some existing
datasets [25, 26], we do not have ground-truth camera poses
as references for evaluation as we focus on uncontrolled
videos. We propose the following metrics for evaluation:

1) The number of registered images (counting the images
in the largest reconstructed model.)

2) The number of separate models generated (should
ideally be one).

3) Breaks along the trajectory. In certain reconstructions,
abrupt jumps (indicating significant drift) may occur
along the trajectory, without the method recognizing
faulty registration and initiating a new model. Given
two consecutive camera positions ti and ti+1 in the



global frame with ∆t = ||ti − ti+1||, we compute the
ratio ∆̂ti = ||ti − ti+1||/mean(||∆ti−k:i+k||), which
means normalizing the position difference based on
local scale to remove the scale drift effect. We define
a break if ∆̂ti > 10 mean(∆t)

4) Rendering quality measured by PSNR (peak signal-to-
noise ratio). Following the quantitative evaluation done
in ACE0 [27], we build a NeRF model [28] along the
trajectory and take every eighth view as a test view. For
unregistered images, we set their poses as an identity
matrix to penalize incomplete reconstructions.

4) Implementation Details: We use Metric3D [8]
for monocular depth estimation and Mask2Former [7]
for semantic segmentation. For the post-refinement, we
enable intrinsic refinement when retriangulation. For
COLMAP/GLOMAP, we apply SIFT feature matching, each
image is matched with 20 frames before and after, and we
enable vocabulary tree matching to allow loop detection.
COLMAP requires a lot of time when running on thousands
of images. In our experiments, we adopt the fast version
parameters2 when running COLMAP.

B. Quantitative Results

We demonstrate the robustness of our method in Table II.
In all video sequences, our method registers the most images
in each sequence without breaking the scene into multiple
models. In contrast, COLMAP can generate multiple models
due to failed image registration. Though GLOMAP also
always generates one single model, there are often multiple
breaks in the generated results, i.e., failed registrations that
are not detected by the method. Note that our method
misses two images in the sequence of “Uppsala”. This is
due to our post-refinement stage, where two images fail to
generate enough SIFT feature correspondences. It is also
worth mentioning that, though we use a fast configuration
of COLMAP, its running time is much longer than ours. Our
method is both more robust and more efficient.

If the 3D map has been accurately reconstructed from the
input video, it should be possible to create a NeRF model
from the registered frames and compute the rendering quality
of a held-out image to the corresponding NeRF rendering.
Since plain NeRF does not have enough capacity for outdoor
unbounded large-scale scenes, we cut the long sequences into
short sequences with 500 frames each. Then we build a NeRF
model (specifically, Nerfacto) on each short sequence, with
every 8th frame held out and used as a test frame. The novel
view synthesis performance for the test frames is reported in
Table I. Our method achieves better rendering results due to
fewer breaks in the trajectory. When COLMAP or GLOMAP
aligns well, their estimated camera poses are more accurate.
However, our method might be less precise, but more robust
overall. As shown in Table III, for the sequence “Helsingborg
Seq-1”, COLMAP and GLOMAP register images well for
the first 500 frames, and achieve better rendering results;
while in frame 500–1000, COLMAP and GLOMAP have

2https://github.com/colmap/colmap/issues/116

TABLE I: Rendering results on selected sequences. The reported
results are the average/min/max PSNR values computed for seg-
ments of 500 frames.

Sequence Metrics COLMAP [2] GLOMAP [3] Ours

Yanshan Park

Avg 13.64 13.35 13.95
min 12.12 10.32 12.51
max 14.48 15.08 15.55

Taicang Park

Avg 16.68 16.77 17.14
min 13.36 12.79 15.64
max 18.67 18.97 18.73

Uppsala

Avg 12.71 14.77 15.25
min 7.7 12.13 14.43
max 14.83 19.75 17.62

Helsingborg-1

Avg 15.18 12.61 14.72
min 13.01 9.26 13.66
max 16.47 16.22 15.77

Helsingborg-2

Avg 14.21 14.56 14.60
min 10.86 12.18 13.17
max 17.74 17.18 17.68

Lund

Avg 12.74 13.04 13.75
min 11.7 12.06 13.16
max 13.99 14.22 14.28

(a) COLMAP (b) GLOMAP (c) Ours

Fig. 2: The camera poses (red in the map) on the sequence
“Helsingborg Seq-1” across frames 500–1000. COLMAP has a
break in the trajectory (circled in blue); GLOMAP tacitly fails
to register images; our method produces smooth and continuous
trajectories.

breaks in the trajectory, resulting in low rendering results. As
shown in Fig. 2, there is a break in the trajectory generated
by COLMAP. In the NeRF evaluation (Fig. 3), we can see the
resulting rendering artifacts at the break pose. It should be
noted that all reported PNSR values are rather low, in part
because the trajectories generated by the methods are not
perfect but also because the NeRF model used to evaluate
struggles with the large-scale outdoor scenes [29].

C. Qualitative Results

In addition to the quantitative evaluations above, we also
compare the recreated paths with approximate GPS tracks
from the data sets, where available. As shown in Fig. 4,
our method can achieve smooth and consistent trajectories.
Though GLOMAP can register more frames than COLMAP
(as seen in Table II), the resulting path and 3D model is often
inconsistent for these kinds of uncontrolled input videos. We
do not show “Taicang Park” and “The Backyard” sequence
because all methods perform well on these two ones.

D. Ablation Studies

We conducted experiments to demonstrate the effective-
ness of the different parts of our proposed reconstruction

https://docs.nerf.studio/nerfology/methods/nerfacto.html
https://github.com/colmap/colmap/issues/116


TABLE II: Reconstruction results on in-the-wild videos. Our method achieves most robust performance while using the least time for
long sequence videos.

Sequence Screenshot #frames Metrics COLMAP [2] GLOMAP [3] Ours

Yanshan Park, China
https://youtu.be/D8B30GIX-8s 3327

# Registered 2989 3327 3327
# Models 2 1 1
# Breaks 3 5 0
Time(min) 665 149 18

Taicang Park, China
https://youtu.be/LJf7LKLvmUc 2597

# Registered 2534 2597 2597
# Models 2 1 1
# Breaks 10 1 0
Time(min) 385 183 8

Uppsala, Sweden,
https://youtu.be/aVh jTIP2cE?t=1262 2533

# Registered 2206 2528 2531
# Models 3 1 1
# Breaks 2 3 1
Time(min) 200 120 12

Nanxun Ancient Town, China
https://youtu.be/Owukwe 8OGw 1026

# Registered 1026 1026 1026
# Models 1 1 1
# Breaks 0 0 0
Time(min) 57 30 6

Helsingborg, Sweden
https://youtu.be/wUZ zslH3vY?t=300
https://youtu.be/wUZ zslH3vY?t=1200

Seq-1 2700

# Registered 2381 2382 2700
# Models 2 1 1
# Breaks 3 29 0
Time(min) 303 154 16

Seq-2 2700

# Registered 2689 2279 2700
# Models 2 1 1
# Breaks 1 13 0
Time(min) 258 140 18

Lund, Sweden
https://youtu.be/Nhc5BNlfDms?t=1800 2700

# Registered 1437 2697 2700
# Models 3 1 1
# Breaks 1 17 0
Time(min) 300 180 16

The Backyard, USA
https://youtu.be/OtkZJbW sO0 578

# Registered 577 577 578
# Models 1 1 1
# Breaks 0 1 0
Time(min) 15 4 4

Time Average (min) 2169 956 12

(a) Reference Image (b) COLMAP (PSNR:8.25)

(c) GLOMAP (PSNR:14.16) (d) Ours (PNSR:16.80)

Fig. 3: The rendering results at the camera pose where COLMAP
breaks.

TABLE III: NeRF rendering results on smaller clipped parts on
“Helsingborg Seq-1”.

Sequence COLMAP [2] GLOMAP [3] Ours

frame 0–500 16.41 16.22 14.05
frame 500–1000 14.99 9.26 15.74

pipeline. Fig. 5 shows the reconstruction results for the “Yan-
shan Park” sequence with and without depth regularization,
masking dynamic objects, and loop closure. Referring to
the reconstruction of COLMAP and GLOMAP on the same
sequence in Fig. 4, as we said, when COLMAP successfully
registers images, the overall result is reliable. Based on this
comparison and checking the video, we can say our method
achieves good and accurate reconstruction on this sequence.

We also tested current camera intrinsic parameter esti-
mation methods. We tried Mast3R [18], MoGE [30] and
GeoCalib [31], where Mast3R and MoGE recover focal
length from the predicted point cloud while GeoCalib di-
rectly predicts from the image. We select the first image
(first two for Mast3R) in the video and feed it into the
above-mentioned methods. We assume a pinhole camera
model where the principal point is in the center. For the
sequence “Yanshan Park”, the estimated focal lengths and
corresponding reconstruction results are presented in Fig. 6.
Locally, imprecise intrinsic parameter estimation will not
result in a severe failure, but with longer trajectories, it will
incur more drifts. Compared to the aforementioned methods
that rely on only one or two images to estimate the focal
length, our method is more computationally expensive but
achieves higher accuracy, making it particularly beneficial
for long sequences.

https://youtu.be/D8B30GIX-8s
https://youtu.be/LJf7LKLvmUc
https://youtu.be/aVh_jTIP2cE?t=1262
https://youtu.be/Owukwe_8OGw
https://youtu.be/wUZ_zslH3vY?t=300
https://youtu.be/wUZ_zslH3vY?t=1200
https://youtu.be/Nhc5BNlfDms?t=1800
https://youtu.be/OtkZJbW_sO0


Sequence COLMAP [2] GLOMAP [3] Ours Reference
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Fig. 4: Reconstruction result visualization. Our method generally achieves smooth and continuous trajectories without breaks. COLMAP
often produces a model only for part of the path. GLOMAP struggles to produce consistent results in these large-scale environments. GPS
tracks are provided for Lund and the two Helsingborg sequences, but note that the provided GPS data is rather inaccurate. For Uppsala,
the path has been drawn manually while referencing the video. No reference data is available for Yanshan Park.

V. CONCLUSIONS

Robust and accurate 3D reconstruction from in-the-wild
videos is a very challenging problem. Compared to standard
SLAM datasets, where the camera is typically carefully
moved through a scene to ensure being able to track its
movement, there is no control over the camera motion and we
often observe pure rotations or pure forward motion, which
are challenging. At the same time, there often are moving
objects in the scene, complicating the process. Addressing
these challenges represents the next frontier in SLAM, and
progress in this direction will lead to more robust and adapt-

able systems, crucial for real-world robotics applications.

With the present work we take strides towards consistent
3D mapping of large-scale environments from uncontrolled
videos: over 1 km in length, thousands of video frames, over
10 min duration. Specifically, we have investigated robust
methods for recovering the focal length from in-the-wild
videos, leverage semantic masks to improve data association
in scenes with moving objects, and use monocular depth cues
to regularize bundle adjustment in order to be more robust
to difficult camera motion and features near the horizon.
Comparing our pipeline to GLOMAP [3] and COLMAP [2],



(a) ✓Mask; ✘Depth;✘Loop (b) ✘Mask; ✓Depth;✘Loop

(c) ✘Mask; ✘Depth;✓Loop (d) ✓Mask; ✓Depth;✓Loop

Fig. 5: Ablation study: on the “Yanshan Park” sequence, we show
the effectiveness of the proposed modules. To handle in-the-wild
videos, prior depth and pruning dynamics in the view greatly help
to improve the robustness.

(a) MoGE (f = 396.69) (b) Mast3R (f = 338.61)

(c) GeoCalib (f = 374.3± 102) (d) Ours (f = 409.89)

Fig. 6: Reconstruction results by different ways of estimating focals.

our proposed method robustly produces longer sequences
without breaks, and does so in a fraction of the time.

Future research directions include methods for further
reducing drift while maintaining consistent reconstructions
and strategies for cases where the view is severely covered
by moving objects.
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